Tiny Wiki : Fast loading, text only version of Wikipedia.

Guglielmo Marconi

Marchese Guglielmo Marconi (; 25 April 1874 – 20 July 1937) was an Italian inventor, best known for his development of a radiotelegraph system, which served as the foundation for the establishment of numerous affiliated companies worldwide. He shared the 1909 Nobel Prize in Physics with Karl Ferdinand Braun, "in recognition of their contributions to the development of wireless telegraphy"."''[http://nobelprize.org/nobel_prizes/physics/laureates/1909/marconi-bio.html Guglielmo Marconi: The Nobel Prize in Physics 1909]''" Later in life, Marconi was an active Italian Fascist and an apologist for their ideology and actions such as the attack by Italian forces in Ethiopia.


Guglielmo Marconi Memorial in Washington, D.C. The memorial is listed on the National Register of Historic Places.

Early years

Marconi was born near Bologna, Italy, the second son of Giuseppe Marconi, an Italian landowner, and his Irish wife, Annie Jameson, granddaughter of the founder of the Jameson Whiskey distillery. Marconi was educated in Bologna in the lab of Augusto Righi, in Florence at the Istituto Cavallero, and, later, in Livorno. As a child Marconi did not do well in school. Baptized as a Catholic, he was also a member of the Anglican Church, being married into it; however, he still received a Catholic annulment.

Radio work

During his early years, Marconi had an interest in science and electricity. One of the scientific developments during this era came from Heinrich Hertz, who, beginning in 1888, demonstrated that one could produce and detect electromagnetic radiation—now generally known as "radio waves", at the time more commonly called "Hertzian waves" or "aetheric waves". Hertz's death in 1894 brought published reviews of his earlier discoveries, and a renewed interest on the part of Marconi. He was permitted to briefly study the subject under Augusto Righi, a University of Bologna physicist and neighbor of Marconi who had done research on Hertz's work. Righi had a subscription to The Electrician where Oliver Lodge published detailed accounts of the apparatus used in his (Lodge's) public demonstrations of wireless telegraphy in 1894.

Early experimental devices

Marconi began to conduct experiments, building much of his own equipment in the attic of his home at the Villa Griffone in Pontecchio, Italy. His goal was to use radio waves to create a practical system of "wireless telegraphy"—i.e. the transmission of telegraph messages without connecting wires as used by the electric telegraph. This was not a new idea—numerous investigators had been exploring wireless telegraph technologies for over 50 years, but none had proven commercially successful. Marconi ''did not'' discover any new and revolutionary principle in his wireless-telegraph system, but rather he assembled and improved an array of facts, unified and adapted them to his system. Marconi's system had the following components:

* A relatively simple oscillator, or spark producing radio transmitter, which was closely modeled after one designed by Righi, in turn similar to what Hertz had used;
* A wire or capacity area placed at a height above the ground;
* A coherer receiver, which was a modification of Edouard Branly's original device, with refinements to increase sensitivity and reliability;
* A telegraph key to operate the transmitter to send short and long pulses, corresponding to the dots-and-dashes of Morse code; and
* A telegraph register, activated by the coherer, which recorded the received Morse code dots and dashes onto a roll of paper tape.

Similar configurations using spark-gap transmitters plus coherer-receivers had been tried by others, but many were unable to achieve transmission ranges of more than a few hundred metres.

At first, Marconi could only signal over limited distances. In the summer of 1895 he moved his experimentation outdoors. After increasing the length of the transmitter and receiver antennas, and arranging them vertically, and positioning the antenna so that it touched the ground, the range increased significantly. Soon he was able to transmit signals over a hill, a distance of approximately . By this point he concluded that with additional funding and research, a device could become capable of spanning greater distances and would prove valuable both commercially and militarily.

Finding limited interest in his work in Italy, in early 1896 at the age of 21, Marconi traveled to London, England, accompanied by his mother, to seek support for his work; Marconi spoke fluent English in addition to Italian. While there, he gained the interest and support of William Preece, the Chief Electrical Engineer of the British Post Office. The apparatus that Marconi possessed at that time was strikingly similar to that of one in 1882 by A. E. Dolbear, of Tufts College, which used a spark coil generator and a carbon granular rectifier for reception. A plaque on the outside of BT Centre commemorates Marconi's first public transmission of wireless signals from that site. A series of demonstrations for the British government followed—by March 1897, Marconi had transmitted Morse code signals over a distance of about across the Salisbury Plain. On 13 May 1897, Marconi sent the first ever wireless communication over open sea. It transversed the Bristol Channel from Lavernock Point (South Wales) to Flat Holm Island, a distance of . The message read "Are you ready". The receiving equipment was almost immediately relocated to Brean Down Fort on the Somerset coast, stretching the range to .

Impressed by these and other demonstrations, Preece introduced Marconi's ongoing work to the general public at two important London lectures: "Telegraphy without Wires", at the Toynbee Hall on 11 December 1896; and "Signaling through Space without Wires", given to the Royal Institution on 4 June 1897.

Numerous additional demonstrations followed, and Marconi began to receive international attention. In July 1897, he carried out a series of tests at La Spezia in his home country, for the Italian government. A test for Lloyds between Ballycastle and Rathlin Island, Ireland, was conducted on 6 July 1898. The English channel was crossed on 27 March 1899, from Wimereux, France to South Foreland Lighthouse, England, and in the fall of 1899, the first demonstrations in the United States took place, with the reporting of the America's Cup international yacht races at New York.

Marconi sailed to the United States at the invitation of the New York Herald newspaper to cover the America's Cup races off Sandy Hook, NJ. The transmission was done aboard the ''SS Ponce'', a passenger ship of the ''Porto Rico Line''.
Marconi left for England on 8 November 1899 on the American Line's , and he and his assistants installed wireless equipment aboard during the voyage. On 15 November the ''St. Paul'' became the first ocean liner to report her imminent arrival by wireless when Marconi's Needles station contacted her sixty-six nautical miles off the English coast.
According to the ''Proceedings of the United States Naval Institute'' by the United States Naval Institute, the Marconi instruments were tested around 1899 and the tests concerning his wireless system found that the "[...] coherer, principle of which was discovered some twenty years ago, [was] the only electrical instrument or device contained in the apparatus that is at all new".

Transatlantic transmissions

Marconi watching associates raise kite antenna at St. John's, December 1901

Around the turn of the century, Marconi began investigating the means to signal completely across the Atlantic, in order to compete with the transatlantic telegraph cables. Marconi established a wireless transmitting station at Marconi House, Rosslare Strand, Co. Wexford in 1901 to act as a link between Poldhu in Cornwall and Clifden in Co. Galway. He soon made the announcement that on 12 December 1901, using a kite-supported antenna for reception, the message was received at Signal Hill in St John's, Newfoundland (now part of Canada) signals transmitted by the company's new high-power station at Poldhu, Cornwall. The distance between the two points was about . Heralded as a great scientific advance, there was—and continues to be—some skepticism about this claim, partly because the signals had been heard faintly and sporadically. There was no independent confirmation of the reported reception, and the transmissions, consisting of the Morse code letter ''S'' sent repeatedly, were difficult to distinguish from atmospheric noise. (A detailed technical review of Marconi's early transatlantic work appears in John S. Belrose's work of 1995.) The Poldhu transmitter was a two-stage circuit. The first stage operated at lower voltage and provided the energy for the second stage to spark at a higher voltage. Nikola Tesla, a rival in transatlantic transmission, stated after being told of Marconi's reported transmission that "Marconi [... was] using seventeen of my patents."

Feeling challenged by skeptics, Marconi prepared a better organized and documented test. In February, 1902, the [http://www.purplesky.co.uk/sources/photos/00061.jpg SS ''Philadelphia''] sailed west from Great Britain with Marconi aboard, carefully recording signals sent daily from the Poldhu station. The test results produced coherer-tape reception up to , and audio reception up to . Interestingly, the maximum distances were achieved at night, and these tests were the first to show that for mediumwave and longwave transmissions, radio signals travel much farther at night than in the day. During the daytime, signals had only been received up to about , less than half of the distance claimed earlier at Newfoundland, where the transmissions had also taken place during the day. Because of this, Marconi had not fully confirmed the Newfoundland claims, although he did prove that radio signals could be sent for hundreds of kilometres, despite some scientists' belief they were essentially limited to line-of-sight distances.

On 17 December 1902, a transmission from the Marconi station in Glace Bay, Nova Scotia, Canada, became the first radio message to cross the Atlantic from North America. On 18 January 1903, a Marconi station built near South Wellfleet, Massachusetts in 1901 sent a message of greetings from Theodore Roosevelt, the President of the United States, to King Edward VII of the United Kingdom, marking the first transatlantic radio transmission originating in the United States. However, consistent transatlantic signalling was difficult to establish.

Marconi began to build high-powered stations on both sides of the Atlantic to communicate with ships at sea, in competition with other inventors. In 1904 a commercial service was established to transmit nightly news summaries to subscribing ships, which could incorporate them into their on-board newspapers. A regular transatlantic radio-telegraph service was finally begun on 17 October 1907 between Clifden Ireland and Glace Bay, but even after this the company struggled for many years to provide reliable communication.


The two radio operators aboard the ''Titanic'' - Jack Phillips and Harold Bride - were not employed by the White Star Line but by the Marconi International Marine Communication Company. Following the sinking of the ocean liner, survivors were rescued by the ''Carpathia'' of the Cunard Line. When it docked in New York, Marconi went aboard with a reporter from the ''New York Times'' to talk with Bride, the surviving operator. On 18 June 1912, Marconi gave evidence to the Court of Inquiry into the loss of the ''Titanic'' regarding the marine telegraphy's functions and the procedures for emergencies at sea. Britain's postmaster-general summed up, referring to the ''Titanic'' disaster, "Those who have been saved, have been saved through one man, Mr. Marconi...and his marvellous invention."

Patent disputes

''Main articles: Invention of radio and History of radio.

Marconi's work built upon the discoveries of numerous other scientists and experimenters. His "two-circuit" equipment, consisting of a spark-gap transmitter plus a coherer-receiver, was similar to those used by other experimenters, and in particular to that employed by Oliver Lodge in a series of widely reported demonstrations in 1894. There were claims that Marconi was able to signal for greater distances than anyone else when using the spark-gap and coherer combination, but these have been disputed (notably by Tesla).Marconi's late-1895 transmission of signals was for around a mile (1.6 km). This was small compared to Tesla's early-1895 transmissions of up to 50 miles. For more see "Nikola Tesla On His Work with Alternating Currents and Their Application to Wireless Telegraphy, Telephony, and Transmission of Power", Leland I. Anderson, Twenty First Century Books, 2002, pp. 26-27.

In 1900 Alexander Stepanovich Popov stated to the Congress of Russian Electrical Engineers that: "[...]'' the emission and reception of signals by Marconi by means of electric oscillations ''[was]'' nothing new. In America, the famous engineer Nikola Tesla carried the same experiments in 1893''."

The Fascist regime in Italy credited Marconi with the first improvised arrangement in the development of radio. There was controversy whether his contribution was sufficient to deserve patent protection, or if his devices were too close to the original ones developed by Hertz, Popov, Branley, Tesla, and Lodge to be patentable.

While Marconi did pioneering demonstrations for the time, his equipment was limited by being essentially untuned, which greatly restricted the number of ''spark-gap'' radio transmitters which could operate simultaneously in a geographical area without causing mutually disruptive interference. (Continuous-wave transmitters were naturally more selective and less prone to this deficiency). Marconi addressed this defect with a patent application for a much more sophisticated "four-circuit" design, which featured two tuned-circuits at both the transmitting and receiving antennas. This was issued as British patent number 7,777 on 26 April 1900. However, this patent came after significant earlier work had been done on electrical tuning by Nikola Tesla and Oliver Lodge. (As a defensive move, in 1911 the Marconi Company purchased the Lodge-Muirhead Syndicate, whose primary asset was Oliver Lodge's 1897 tuning patent. This followed a 1911 court case in which the Marconi company was ruled to have illegally used the techniques described under Lodge's tuning patent.) Thus, the "four-sevens" patent and its equivalents in other countries was the subject of numerous legal challenges, with rulings which varied by jurisdiction, from full validation of Marconi's tuning patent to complete nullification.

In 1943, a lawsuit regarding Marconi's numerous other radio patents was resolved in the United States. The court decision was based on the prior work conducted by others, including Nikola Tesla, Oliver Lodge, and John Stone Stone, from which some of Marconi patents (such as ) stemmed. The U. S. Supreme Court stated that,
The Tesla patent No. 645,576, applied for 2 September 1897 and allowed 20 March 1900, disclosed a four-circuit system, having two circuits each at transmitter and receiver, and recommended that all four circuits be tuned to the same frequency. [... He] recognized that his apparatus could, without change, be used for wireless communication, which is dependent upon the transmission of electrical energy.

In making their decision, the court noted,
Marconi's reputation as the man who first achieved successful radio transmission rests on his original patent, which became reissue No. 11,913, and which is not here [320 U.S. 1, 38] in question. That reputation, however well-deserved, does not entitle him to a patent for every later improvement which he claims in the radio field. Patent cases, like others, must be decided not by weighing the reputations of the litigants, but by careful study of the merits of their respective contentions and proofs."''Wireless Telegraph co. of America v. United States''.

The court also stated that,
It is well established that as between two inventors priority of invention will be awarded to the one who by satisfying proof can show that he first conceived of the invention''."

Finally on 21 June 1943, the Supreme Court of the United States credited Nikola Tesla as being the inventor of the radio.

The case was resolved in the U.S. Supreme Court by overturning most of Marconi's patents. At the time, the United States Army was involved in a patent infringement lawsuit with Marconi's company regarding radio, leading observers to posit that the government nullified Marconi's other patents to render moot claims for compensation (as, it is speculated, the government's initial reversal to grant Marconi the patent right in order to nullify any claims Tesla had for compensation). In contrast to the United States system, Mr. Justice Parker of the British High Court of Justice upheld Marconi's "four-sevens" tuning patent. These proceedings made up only a part of a long series of legal struggles, as major corporations jostled for advantage in a new and important industry.

Continuing work

Over the years, the Marconi companies gained a reputation for being technically conservative, in particular by continuing to use inefficient spark-transmitter technology, which could only be used for radiotelegraph operations, long after it was apparent that the future of radio communication lay with continuous-wave transmissions, which were more efficient and could be used for audio transmissions. Somewhat belatedly, the company did begin significant work with continuous-wave equipment beginning in 1915, after the introduction of the oscillating vacuum tube (valve). In 1920, employing a vacuum tube transmitter, the Chelmsford Marconi factory was the location for the first entertainment radio broadcasts in the United Kingdom—one of these featured Dame Nellie Melba. In 1922 regular entertainment broadcasts commenced from the Marconi Research Centre at Writtle.

Later years

In 1914 Marconi was made a Senator in the Italian Senate and appointed Honorary Knight Grand Cross of the Royal Victorian Order in the UK. During World War I, Italy joined the Allied side of the conflict, and Marconi was placed in charge of the Italian military's radio service. He attained the rank of lieutenant in the Italian Army and of commander in the Italian Navy. In 1924, he was made a marquess by King Victor Emmanuel III.

Marconi joined the Italian Fascist party in 1923. In 1930, Italian dictator Benito Mussolini appointed him President of the Royal Academy of Italy, which made Marconi a member of the Fascist Grand Council.

Marconi died in Rome in 1937 at age 63 following a series of heart attacks, and Italy held a state funeral for him. As a tribute, all radio stations throughout the world observed two minutes of silence. His remains are housed in the Villa Griffone at Sasso Marconi, Emilia-Romagna, which assumed that name in his honour in 1938.

Personal life

On 16 March 1905, Marconi married Beatrice O'Brien (1882–1976), daughter of Edward Donough O'Brien, 14th Baron Inchiquin, Ireland. They had three daughters—Degna (1908–1998), Gioia (1916–1996) and a third who lived only a few weeks—and a son,Giulio (1910–1971). They divorced in 1924 and the marriage was annulled in 1927. On 15 June 1927, Marconi married Maria Cristina Bezzi-Scali (1900–1994); Fascist dictator Benito Mussolini was Marconi's best man at the wedding. They had one daughter, Elettra (born 1930). Marconi had a brother, Alfonso, and a stepbrother, Luigi.

In 1915 his friend Mrs. Mary Cummins Brown of New York perished in the sinking of the British luxury liner ''RMS Lusitania'' off the Irish coast, a fact he wrote about two days later in ''The New York Times''.


The Bologna Airport (BLQ) is named after Guglielmo Marconi, as is the Marconiville section of the town of Copiague, the Australian football club the Marconi Stallions, the Nepean, Ontario Villa Marconi retirement home, the Upper East Side New York's La Scuola D'Italia, the Via Guglielmo Marconi in Bologna, and Marconi Avenue, a street on The Hill, St. Louis. A Marconi memorial statue stands on Telegraph Hill in San Francisco.

The band Jefferson Starship references him in their song We Built This City. The lyrics say: "Marconi plays the mamba, listen to the radio".

The premier collection of Marconi artifacts was held by The General Electric Company, p.l.c. (GEC) of the United Kingdom which later renamed to Marconi plc and Marconi Corporation plc. In December 2004 the extensive Marconi Collection, held at the former Marconi Research Centre at Great Baddow, Chelmsford, Essex UK was [http://news.bbc.co.uk/1/hi/england/berkshire/4072929.stm gifted to the Nation] by the Company via the University of Oxford. This consisted of the BAFTA award-winning [http://www.marconicalling.com/ MarconiCalling] website, some 250+ physical artifacts and the massive ephemera collection of papers, books, patents and many other items. The artifacts are now held by [http://www.mhs.ox.ac.uk/marconi/collection/ The Museum of the History of Science] and the ephemera Archives by the nearby [http://www.ouls.ox.ac.uk/news/2008_nov_07 Bodleian Library]. The latest release, following three years work at the Bodleian, is the [http://www.bodley.ox.ac.uk/dept/scwmss/wmss/online/modern/marconi/marconi.html Online Catalogue to the Marconi Archives], released in November 2008.

There is a road called Marconi Road in Kowloon Tong, Hong Kong, named in honour of Marconi. It also happens that this area was the former home of many of Hong Kong's broadcasters, including Asia Television Limited and Television Broadcasts Limited.

There is a beach called Marconi Beach in Wellfleet, Massachusetts, named after him. It is part of the Cape Cod National Seashore and is located near the site of his first transatlantic wireless signal from the U.S to England.

Sacramento, CA has a monument for Marconi at its Fulton intersection.

There is a road named Marconi Boulevard in Rocky Point, New York, named so because his original radio shack is found along that road at the Frank J. Carasiti Elementary School in Rocky Point.

Guglielmo Marconi Memorial Plaza in Somerset, NJ is located on the former site of the New Brunswick Marconi Station. President Woodrow Wilson's Fourteen Points speech was transmitted from the site in 1918.

There is a road called Marconi Road in Wall Township, New Jersey. The road is located in the former Camp Evans, which was the site of the Belmar Marconi Station. The site is now the location of the Infoage Science/History Learning Center, which is dedicated to the preservation and education of information age technologies.

Honors and Awards

The Radio Hall of Fame (Museum of Broadcast Communications, Chicago) inducted Marconi soon after the inception of its awards. He was inducted into the New Jersey Hall of Fame in 2009.

The Dutch radio academy bestows the Marconi Awards annually for outstanding radio programmes, presenters and stations; the National Association of Broadcasters (US) bestows the annual NAB Marconi Radio Awards also for outstanding radio programs and stations.

Marconi was inducted into the National Broadcasters Hall of Fame in 1977.

A commemorative British two pound coin was released in 2001 celebrating the 100th anniversary of Marconi's first wireless communication.


British Patents

* [http://www.earlyradiohistory.us/1901fae.htm British patent No. 12,039,] Date of Application 2 June 1896; Complete Specification Left, 2 March 1897; Accepted, 2 July 1897 (later claimed by Oliver Lodge to contain his own ideas which he failed to patent)

US Patents

* "''Transmitting electrical signals''", (using Ruhmkorff coil and Morse code key) filed December 1896, patented July, 1897
* "''Apparatus employed in wireless telegraphy''".
* "''Apparatus employed in wireless telegraphy''".
* "''Apparatus employed in wireless telegraphy''".
* "''Apparatus employed in wireless telegraphy''".
* "''Apparatus employed in wireless telegraphy''".
* "''Apparatus employed in wireless telegraphy''".
* "''Apparatus employed in wireless telegraphy''".
* "''Receiver for electrical oscillations''".
* "''Wireless signaling system''".
* "''Wireless telegraphy''". Filed October 13, 1903; Issued 13, 1905.
* "''Apparatus for wireless telegraphy''" (later practical version of system)
* "''Wireless telegraphy system''". Filed November 19, 1901; Issued April 19, 1904.
* "''Wireless signaling system''". Filed September 10, 1903; Issued 24 May 1904.
* "''Apparatus for wireless telegraphy''" (Four tuned system; this innovation was predated by N. Tesla, O. Lodge, and J. S. Stone)
* "''Wireless telegraphy''". Filed October 13, 1903
* "''Wireless telegraphy''". Filed October 13, 1903; Issued June 13, 1905.
* "''Wireless telegraphy''". Filed November 28, 1902; Issued April 14, 1908.
* "''Wireless telegraphy''".
* "''Detecting electrical oscillations''". Filed February 2, 1903; Issued April 14, 1908.
* "''Wireless telegraphy''".
* "''Transmitting apparatus for wireless telegraphy''". Filed April 10, 1908; Issued September 28, 1909.
* "''Apparatus for wireless telegraphy''".
* "''Apparatus for wireless telegraphy''". Filed April 10, 1908; Issued September 28, 1909.
* "''Apparatus for wireless telegraphy''". Filed March 31, 1909; Issued April 12, 1910.
* "''Transmitting apparatus for wireless telegraphy''". Filed July 15, 1910; Issued July 11, 1911.
* "''Means for generating alternating electric currents''". Filed January 27, 1914; Issued July 7, 1914.
* "''Transmitter for wireless telegraphy''". Filed July 20, 1908.
* "''Transmitting apparatus for use in wireless telegraphy and telephony''". Filed December 31, 1913; Issued 15 May 1917.
* "''Wireless telegraph transmitter''".
* "''Electric accumulator''". Filed March 9, 1918
* "''Transmitter for wireless telegraphy''". Filed July 20, 1908; Issued August 3, 1915.
* "''Thermionic valve''". Filed October 14, 1926; Issued November 20, 1934.

Source: Wikipedia