Tiny Wiki : Fast loading, text only version of Wikipedia.

Column



National Capitol Columns at the United States National Arboretum in Washington, D.C.
Marble columns with antique capitals in the Great Mosque of Kairouan also known as the Mosque of Uqba, city of Kairouan, Tunisia
A column in structural engineering is a vertical structural element that transmits, through compression, the weight of the structure above to other structural elements below. For the purpose of wind or earthquake engineering, columns may be designed to resist lateral forces. Other compression members are often termed "columns" because of the similar stress conditions. Columns are frequently used to support beams or arches on which the upper parts of walls or ceilings rest. In architecture "column" refers to such a structural element that also has certain proportional and decorative features. A column might also be a decorative or triumphant feature but need not be supporting any structure e.g. a statue on top.

History



In the architecture of ancient Egypt as early as 2600 BC the architect Imhotep made use of stone columns whose surface was carved to reflect the organic form of bundled reeds; in later Egyptian architecture faceted cylinders were also common.

Some of the most elaborate columns in the ancient world were those of Persia especially the massive stone columns erected in Persepolis. They included double-bull structures in their capitals. The Hall of Hundred Columns at Persepolis, measuring 70× 70 meters was built by the Achaemenid king Darius I (524–486 BC). Many of the ancient Persian columns are standing, some being more than 30 meters tall.

The impost (or pier) is the topmost member of a column. The bottom-most part of the arch, called the springing, rests on the impost.

Structure




Early columns were constructed of stone, some out of a single piece of stone, usually by turning on a lathe-like apparatus. Single-piece columns are among the heaviest stones used in architecture. Other stone columns are created out of multiple sections of stone, mortared or dry-fit together. In many classical sites, sectioned columns were carved with a center hole or depression so that they could be pegged together, using stone or metal pins. The design of most classical columns incorporates entasis (the inclusion of a slight outward curve in the sides) plus a reduction in diameter along the height of the column, so that the top is as little as 83% of the bottom diameter. This reduction mimics the parallax effects which the eye expects to see, and tends to make columns look taller and straighter than they are while entasis adds to that effect.

Modern columns are constructed out of steel, poured or precast concrete, or brick. They may then be clad in an architectural covering (or veneer), or left bare.

Equilibrium, instability, and loads






As the axial load on a perfectly straight slender column with elastic material properties is increased in magnitude, this ideal column passes through three states: stable equilibrium, neutral equilibrium, and instability. The straight column under load is in stable equilibrium if a lateral force, applied between the two ends of the column, produces a small lateral deflection which disappears and the column returns to its straight form when the lateral force is removed. If the column load is gradually increased, a condition is reached in which the straight form of equilibrium becomes so-called neutral equilibrium, and a small lateral force will produce a deflection that does not disappear and the column remains in this slightly bent form when the lateral force is removed. The load at which neutral equilibrium of a column is reached is called the critical or buckling load. The state of instability is reached when a slight increase of the column load causes uncontrollably growing lateral deflections leading to complete collapse.

For an axially loaded straight column with any end support conditions, the equation of static equilibrium, in the form of a differential equation, can be solved for the deflected shape and critical load of the column. With hinged, fixed or free end support conditions the deflected shape in neutral equilibrium of an initially straight column with uniform cross section throughout its length always follows a partial or composite sinusoidal curve shape, and the critical load is given by

f_{cr}\equiv\frac{\pi^2\textit{E}I_{min}}
Source: Wikipedia